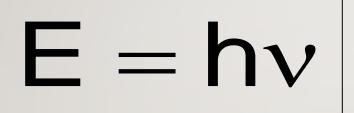

# ONDAS ELECTROMAGNÉTICAS

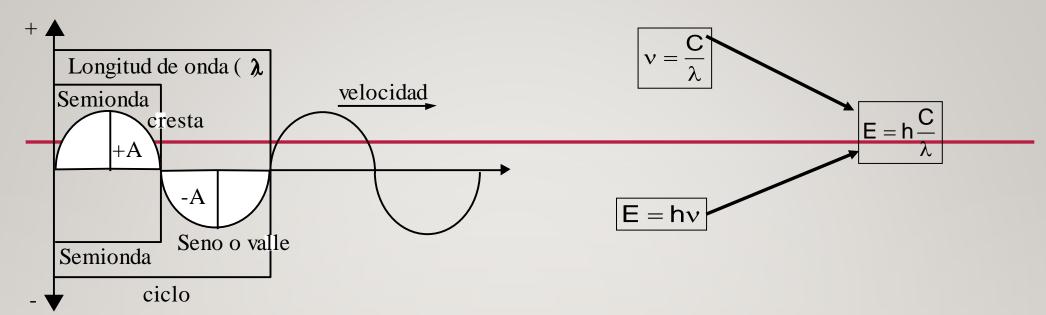
ING. CÉSAR HORNA TOCAS

## Onda electromagnética


- ✓ Estas ondas se propagan en cualquier medio, no necesita de medios materiales para su propagación.
- ✓ Son ondas formadas por un campo magnético y un campo eléctrico, perpendiculares entre sí (es decir formando 90º).



✓ En el vacío dicha perturbación avanza a la velocidad de la luz, 300 000 km/s. Así las ondas electromagnéticas (O.E.) transportan energía sin que haya transporte de materia.


### Teoría Cuántica De Max Planck

**En 1900 Max Planck** rompió radicalmente con los conceptos hasta esos entonces aceptados por la física clásica en la que se consideraba "Que los átomos y las moléculas solo podían emitir o absorber cualquier cantidad de energía radiante".



La energía E de un solo cuanto de energía emitido es proporcional a la frecuencia de radiación

Planck dijo: "Que los átomos y las moléculas sólo podían emitir o absorber energía en cantidades discretas como pequeños paquetes o fardos". Planck dio el nombre de cuanto a la mínima cantidad de energía que podía ser emitida o absorbida en forma de radiación electromagnética.



 $\lambda$ : Longitud de onda (m, cm)

υ: Frecuencia (s<sup>-1</sup>)

c: Velocidad de la luz (  $3 \times 10^8 \text{ m/s}$ ,  $3 \times 10^{10} \text{ cm/s}$ )

h: Constante de Max Planck  $(6,62 \times 10^{-34} \text{J.s.})$  6,62 x  $10^{-27} \text{Erg.s.})$ 

E: Energía (Joule, Ergios)

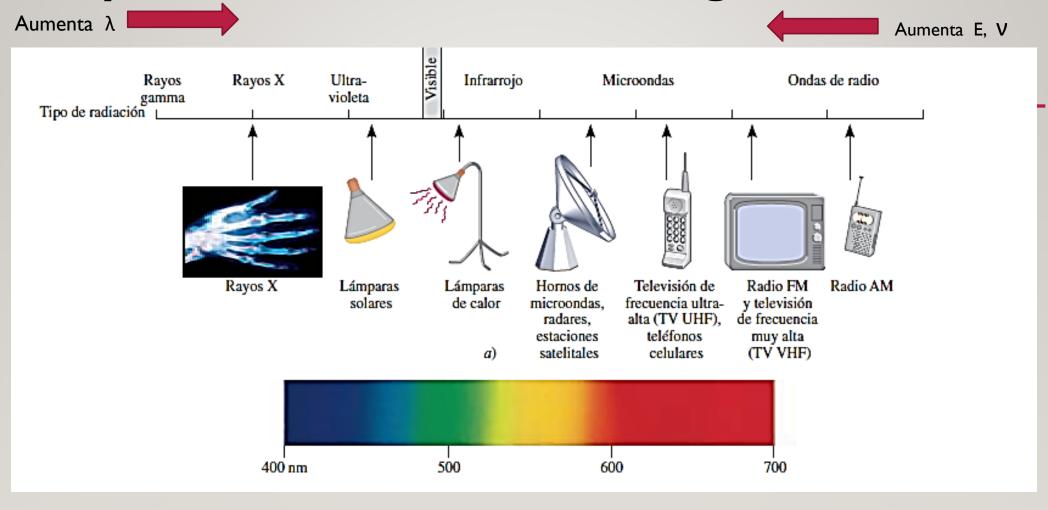
Para n fotones

E = nhv

 $E = nh C / \lambda$ 

#### **Factores de Conversión:**

 $1 \text{ nm} = 10^{-9} \text{ m}$ 


 $1 \text{ A}^{\circ} = 10^{-8} \text{ cm} = 10^{-10} \text{ m}$ 

 $1 \text{ s}^{-1} = 1 \text{ Hz}$ 

 $1 \text{ MHz} = 10^6 \text{ Hz}$ 

 $1 J = 10^7 Ergios$ 

### Espectro de ondas electromagnética

